政安晨:【Keras机器学习示例演绎】(十五)—— 用于图像分类的 CutMix 数据增强技术

目录

简介

设置

加载 CIFAR-10 数据集

定义超参数

定义图像预处理函数

将数据转换为 TensorFlow 数据集对象

定义 CutMix 数据增强功能

可视化应用 CutMix 扩增后的新数据集

定义 ResNet-20 模型

使用经 CutMix 扩展的数据集训练模型

使用原始非增强数据集训练模型

注释


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:利用 CutMix 对 CIFAR-10 上的图像分类进行数据扩增。

简介


CutMix 是一种数据增强技术,可解决区域剔除策略中存在的信息丢失和效率低下问题。

该技术不是删除像素并用黑色或灰色像素或高斯噪声填充,而是用另一幅图像的补丁替换被删除的区域,同时根据合并图像的像素数量按比例混合地面实况标签。CutMix 是在 CutMix 中提出的:利用可定位特征训练强分类器的正则化策略》(Yun et al.)

它是通过以下公式实现的:

其中,M 是二进制掩码,表示两幅随机绘制的图像中的剪切和填充区域,λ(在 [0, 1] 中)从 Beta(α,α)分布中抽取。

边界框的坐标为:

表示图像的剪切和填充区域。边界框采样用以下方式表示:

其中,rx、ry 均从带上限的均匀分布中随机抽取。

设置

import numpy as np
import keras
import matplotlib.pyplot as plt

from keras import layers

# TF imports related to tf.data preprocessing
from tensorflow import clip_by_value
from tensorflow import data as tf_data
from tensorflow import image as tf_image
from tensorflow import random as tf_random

keras.utils.set_random_seed(42)

加载 CIFAR-10 数据集

在本例中,我们将使用 CIFAR-10 图像分类数据集。

(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, num_classes=10)
y_test = keras.utils.to_categorical(y_test, num_classes=10)

print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)

class_names = [
    "Airplane",
    "Automobile",
    "Bird",
    "Cat",
    "Deer",
    "Dog",
    "Frog",
    "Horse",
    "Ship",
    "Truck",
]

演绎展示:

(50000, 32, 32, 3)
(50000, 10)
(10000, 32, 32, 3)
(10000, 10)

定义超参数

AUTO = tf_data.AUTOTUNE
BATCH_SIZE = 32
IMG_SIZE = 32

定义图像预处理函数

def preprocess_image(image, label):
    image = tf_image.resize(image, (IMG_SIZE, IMG_SIZE))
    image = tf_image.convert_image_dtype(image, "float32") / 255.0
    label = keras.ops.cast(label, dtype="float32")
    return image, label

将数据转换为 TensorFlow 数据集对象

train_ds_one = (
    tf_data.Dataset.from_tensor_slices((x_train, y_train))
    .shuffle(1024)
    .map(preprocess_image, num_parallel_calls=AUTO)
)
train_ds_two = (
    tf_data.Dataset.from_tensor_slices((x_train, y_train))
    .shuffle(1024)
    .map(preprocess_image, num_parallel_calls=AUTO)
)

train_ds_simple = tf_data.Dataset.from_tensor_slices((x_train, y_train))

test_ds = tf_data.Dataset.from_tensor_slices((x_test, y_test))

train_ds_simple = (
    train_ds_simple.map(preprocess_image, num_parallel_calls=AUTO)
    .batch(BATCH_SIZE)
    .prefetch(AUTO)
)

# Combine two shuffled datasets from the same training data.
train_ds = tf_data.Dataset.zip((train_ds_one, train_ds_two))

test_ds = (
    test_ds.map(preprocess_image, num_parallel_calls=AUTO)
    .batch(BATCH_SIZE)
    .prefetch(AUTO)
)

定义 CutMix 数据增强功能

CutMix 函数使用两个图像和标签对进行增强。它从 Beta 分布中采样 λ(l),并通过 get_box 函数返回一个边界框。然后,我们裁剪第二幅图像(图像 2),并将该图像填充到最终填充图像的相同位置。

def sample_beta_distribution(size, concentration_0=0.2, concentration_1=0.2):
    gamma_1_sample = tf_random.gamma(shape=[size], alpha=concentration_1)
    gamma_2_sample = tf_random.gamma(shape=[size], alpha=concentration_0)
    return gamma_1_sample / (gamma_1_sample + gamma_2_sample)


def get_box(lambda_value):
    cut_rat = keras.ops.sqrt(1.0 - lambda_value)

    cut_w = IMG_SIZE * cut_rat  # rw
    cut_w = keras.ops.cast(cut_w, "int32")

    cut_h = IMG_SIZE * cut_rat  # rh
    cut_h = keras.ops.cast(cut_h, "int32")

    cut_x = keras.random.uniform((1,), minval=0, maxval=IMG_SIZE)  # rx
    cut_x = keras.ops.cast(cut_x, "int32")
    cut_y = keras.random.uniform((1,), minval=0, maxval=IMG_SIZE)  # ry
    cut_y = keras.ops.cast(cut_y, "int32")

    boundaryx1 = clip_by_value(cut_x[0] - cut_w // 2, 0, IMG_SIZE)
    boundaryy1 = clip_by_value(cut_y[0] - cut_h // 2, 0, IMG_SIZE)
    bbx2 = clip_by_value(cut_x[0] + cut_w // 2, 0, IMG_SIZE)
    bby2 = clip_by_value(cut_y[0] + cut_h // 2, 0, IMG_SIZE)

    target_h = bby2 - boundaryy1
    if target_h == 0:
        target_h += 1

    target_w = bbx2 - boundaryx1
    if target_w == 0:
        target_w += 1

    return boundaryx1, boundaryy1, target_h, target_w


def cutmix(train_ds_one, train_ds_two):
    (image1, label1), (image2, label2) = train_ds_one, train_ds_two

    alpha = [0.25]
    beta = [0.25]

    # Get a sample from the Beta distribution
    lambda_value = sample_beta_distribution(1, alpha, beta)

    # Define Lambda
    lambda_value = lambda_value[0][0]

    # Get the bounding box offsets, heights and widths
    boundaryx1, boundaryy1, target_h, target_w = get_box(lambda_value)

    # Get a patch from the second image (`image2`)
    crop2 = tf_image.crop_to_bounding_box(
        image2, boundaryy1, boundaryx1, target_h, target_w
    )
    # Pad the `image2` patch (`crop2`) with the same offset
    image2 = tf_image.pad_to_bounding_box(
        crop2, boundaryy1, boundaryx1, IMG_SIZE, IMG_SIZE
    )
    # Get a patch from the first image (`image1`)
    crop1 = tf_image.crop_to_bounding_box(
        image1, boundaryy1, boundaryx1, target_h, target_w
    )
    # Pad the `image1` patch (`crop1`) with the same offset
    img1 = tf_image.pad_to_bounding_box(
        crop1, boundaryy1, boundaryx1, IMG_SIZE, IMG_SIZE
    )

    # Modify the first image by subtracting the patch from `image1`
    # (before applying the `image2` patch)
    image1 = image1 - img1
    # Add the modified `image1` and `image2`  together to get the CutMix image
    image = image1 + image2

    # Adjust Lambda in accordance to the pixel ration
    lambda_value = 1 - (target_w * target_h) / (IMG_SIZE * IMG_SIZE)
    lambda_value = keras.ops.cast(lambda_value, "float32")

    # Combine the labels of both images
    label = lambda_value * label1 + (1 - lambda_value) * label2
    return image, label

注意:我们是将两张图片合成一张。

可视化应用 CutMix 扩增后的新数据集

# Create the new dataset using our `cutmix` utility
train_ds_cmu = (
    train_ds.shuffle(1024)
    .map(cutmix, num_parallel_calls=AUTO)
    .batch(BATCH_SIZE)
    .prefetch(AUTO)
)

# Let's preview 9 samples from the dataset
image_batch, label_batch = next(iter(train_ds_cmu))
plt.figure(figsize=(10, 10))
for i in range(9):
    ax = plt.subplot(3, 3, i + 1)
    plt.title(class_names[np.argmax(label_batch[i])])
    plt.imshow(image_batch[i])
    plt.axis("off")

定义 ResNet-20 模型

def resnet_layer(
    inputs,
    num_filters=16,
    kernel_size=3,
    strides=1,
    activation="relu",
    batch_normalization=True,
    conv_first=True,
):
    conv = layers.Conv2D(
        num_filters,
        kernel_size=kernel_size,
        strides=strides,
        padding="same",
        kernel_initializer="he_normal",
        kernel_regularizer=keras.regularizers.L2(1e-4),
    )
    x = inputs
    if conv_first:
        x = conv(x)
        if batch_normalization:
            x = layers.BatchNormalization()(x)
        if activation is not None:
            x = layers.Activation(activation)(x)
    else:
        if batch_normalization:
            x = layers.BatchNormalization()(x)
        if activation is not None:
            x = layers.Activation(activation)(x)
        x = conv(x)
    return x


def resnet_v20(input_shape, depth, num_classes=10):
    if (depth - 2) % 6 != 0:
        raise ValueError("depth should be 6n+2 (eg 20, 32, 44 in [a])")
    # Start model definition.
    num_filters = 16
    num_res_blocks = int((depth - 2) / 6)

    inputs = layers.Input(shape=input_shape)
    x = resnet_layer(inputs=inputs)
    # Instantiate the stack of residual units
    for stack in range(3):
        for res_block in range(num_res_blocks):
            strides = 1
            if stack > 0 and res_block == 0:  # first layer but not first stack
                strides = 2  # downsample
            y = resnet_layer(inputs=x, num_filters=num_filters, strides=strides)
            y = resnet_layer(inputs=y, num_filters=num_filters, activation=None)
            if stack > 0 and res_block == 0:  # first layer but not first stack
                # linear projection residual shortcut connection to match
                # changed dims
                x = resnet_layer(
                    inputs=x,
                    num_filters=num_filters,
                    kernel_size=1,
                    strides=strides,
                    activation=None,
                    batch_normalization=False,
                )
            x = layers.add([x, y])
            x = layers.Activation("relu")(x)
        num_filters *= 2

    # Add classifier on top.
    # v1 does not use BN after last shortcut connection-ReLU
    x = layers.AveragePooling2D(pool_size=8)(x)
    y = layers.Flatten()(x)
    outputs = layers.Dense(
        num_classes, activation="softmax", kernel_initializer="he_normal"
    )(y)

    # Instantiate model.
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


def training_model():
    return resnet_v20((32, 32, 3), 20)


initial_model = training_model()
initial_model.save_weights("initial_weights.weights.h5")

使用经 CutMix 扩展的数据集训练模型

model = training_model()
model.load_weights("initial_weights.weights.h5")

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(train_ds_cmu, validation_data=test_ds, epochs=15)

test_loss, test_accuracy = model.evaluate(test_ds)
print("Test accuracy: {:.2f}%".format(test_accuracy * 100))

演绎展示:

Epoch 1/15
   10/1563 [37m━━━━━━━━━━━━━━━━━━━━  19s 13ms/step - accuracy: 0.0795 - loss: 5.3035

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699988196.560261  362411 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 64s 27ms/step - accuracy: 0.3148 - loss: 2.1918 - val_accuracy: 0.4067 - val_loss: 1.8339
Epoch 2/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 27s 17ms/step - accuracy: 0.4295 - loss: 1.9021 - val_accuracy: 0.5516 - val_loss: 1.4744
Epoch 3/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 28s 18ms/step - accuracy: 0.4883 - loss: 1.8076 - val_accuracy: 0.5305 - val_loss: 1.5067
Epoch 4/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 27s 17ms/step - accuracy: 0.5243 - loss: 1.7342 - val_accuracy: 0.6303 - val_loss: 1.2822
Epoch 5/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 27s 17ms/step - accuracy: 0.5574 - loss: 1.6614 - val_accuracy: 0.5370 - val_loss: 1.5912
Epoch 6/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 27s 17ms/step - accuracy: 0.5832 - loss: 1.6167 - val_accuracy: 0.6254 - val_loss: 1.3116
Epoch 7/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 26s 17ms/step - accuracy: 0.6045 - loss: 1.5738 - val_accuracy: 0.6101 - val_loss: 1.3408
Epoch 8/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 28s 18ms/step - accuracy: 0.6170 - loss: 1.5493 - val_accuracy: 0.6209 - val_loss: 1.2923
Epoch 9/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 29s 18ms/step - accuracy: 0.6292 - loss: 1.5299 - val_accuracy: 0.6290 - val_loss: 1.2813
Epoch 10/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 28s 18ms/step - accuracy: 0.6394 - loss: 1.5110 - val_accuracy: 0.7234 - val_loss: 1.0608
Epoch 11/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 26s 17ms/step - accuracy: 0.6467 - loss: 1.4915 - val_accuracy: 0.7498 - val_loss: 0.9854
Epoch 12/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 28s 18ms/step - accuracy: 0.6559 - loss: 1.4785 - val_accuracy: 0.6481 - val_loss: 1.2410
Epoch 13/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 26s 17ms/step - accuracy: 0.6596 - loss: 1.4656 - val_accuracy: 0.7551 - val_loss: 0.9784
Epoch 14/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 27s 17ms/step - accuracy: 0.6577 - loss: 1.4637 - val_accuracy: 0.6822 - val_loss: 1.1703
Epoch 15/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 26s 17ms/step - accuracy: 0.6702 - loss: 1.4445 - val_accuracy: 0.7108 - val_loss: 1.0805
 313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.7140 - loss: 1.0766
Test accuracy: 71.08%

使用原始非增强数据集训练模型

model = training_model()
model.load_weights("initial_weights.weights.h5")
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(train_ds_simple, validation_data=test_ds, epochs=15)

test_loss, test_accuracy = model.evaluate(test_ds)
print("Test accuracy: {:.2f}%".format(test_accuracy * 100))

演绎展示:

Epoch 1/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 41s 15ms/step - accuracy: 0.3943 - loss: 1.8736 - val_accuracy: 0.5359 - val_loss: 1.4376
Epoch 2/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 11s 7ms/step - accuracy: 0.6160 - loss: 1.2407 - val_accuracy: 0.5887 - val_loss: 1.4254
Epoch 3/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 11s 7ms/step - accuracy: 0.6927 - loss: 1.0448 - val_accuracy: 0.6102 - val_loss: 1.4850
Epoch 4/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 12s 7ms/step - accuracy: 0.7411 - loss: 0.9222 - val_accuracy: 0.6262 - val_loss: 1.3898
Epoch 5/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 13s 8ms/step - accuracy: 0.7711 - loss: 0.8439 - val_accuracy: 0.6283 - val_loss: 1.3425
Epoch 6/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 12s 8ms/step - accuracy: 0.7983 - loss: 0.7886 - val_accuracy: 0.2460 - val_loss: 5.6869
Epoch 7/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 11s 7ms/step - accuracy: 0.8168 - loss: 0.7490 - val_accuracy: 0.1954 - val_loss: 21.7670
Epoch 8/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 11s 7ms/step - accuracy: 0.8113 - loss: 0.7779 - val_accuracy: 0.1027 - val_loss: 36.3144
Epoch 9/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 11s 7ms/step - accuracy: 0.6592 - loss: 1.4179 - val_accuracy: 0.1025 - val_loss: 40.0770
Epoch 10/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 12s 8ms/step - accuracy: 0.5611 - loss: 1.9856 - val_accuracy: 0.1699 - val_loss: 40.6308
Epoch 11/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 13s 8ms/step - accuracy: 0.6076 - loss: 1.7795 - val_accuracy: 0.1003 - val_loss: 63.4775
Epoch 12/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 12s 7ms/step - accuracy: 0.6175 - loss: 1.8077 - val_accuracy: 0.1099 - val_loss: 21.9148
Epoch 13/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 12s 7ms/step - accuracy: 0.6468 - loss: 1.6702 - val_accuracy: 0.1576 - val_loss: 72.7290
Epoch 14/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 12s 7ms/step - accuracy: 0.6437 - loss: 1.7858 - val_accuracy: 0.1000 - val_loss: 64.9249
Epoch 15/15
 1563/1563 ━━━━━━━━━━━━━━━━━━━━ 13s 8ms/step - accuracy: 0.6587 - loss: 1.7587 - val_accuracy: 0.1000 - val_loss: 138.8463
 313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.0988 - loss: 139.3117
Test accuracy: 10.00%

注释


在本例中,我们对模型进行了 15 个轮次的训练。

在我们的实验中,与未使用增强功能的模型(66.90%)相比,使用 CutMix 增强功能的模型在 CIFAR-10 数据集上获得了更高的准确率(实验中为 77.34%)。

您可能会注意到,使用 CutMix 增强功能训练模型所需的时间更短。

您可以根据原始论文进一步尝试使用 CutMix 技术。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/571582.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

nginx 配置 SSL 证书实现 https 访问

nginx 配置SSL证书实现https访问 1. SSL 证书简介与获取1.1 SSL 证书介绍1.2 获取 SSL 证书 2. nginx 配置 SSL 文件2.1 SSL 文件放置与配置文件修改2.1.1 文件配置2.1.2 强制 https 访问 2.2 验证配置结果 同步发布在个人笔记 nginx 配置 SSL 证书实现 https 访问 配置好 ngi…

Powershell 一键安装 virtio_qemu_agent

前言 qemu-guest-agent qemu-guest-agent是一个助手守护进程,安装在客户机中。它用于在主机和客户端之间交换信息,并在客户端执行命令。 在Proxmox VE中,qemu-guest-agent主要用于三件事: 正确关闭客户机,而不是依赖于ACPI命令或windows策略在进行备份/快照时冻结客户机…

20240309web前端_第四次作业_完成随机点名程序

要求 一、结合抽奖案例完成随机点名程序,要求如下: 1.点击点名按钮,名字界面随机显示,按钮文字由点名变为停止 2.再次点击点名按钮,显示当前被点名学生姓名,按钮文字由停止变为点名 3.样式请参考css及html自由发挥完成…

flutter ios Firebase 消息通知错误 I-COR000005,I-FCM001000 解决

*前提是已经 使用firebase-tools 已经给 Flutter 加入了 消息通知相关配置。教程>> 一、I-COR000005 10.22.0 - [FirebaseCore][I-COR000005] No app has been configured yet. import Firebase....FirebaseApp.configure() 10.22.0 - [FirebaseMessaging][I-FCM001000…

kubernetes中Pod调度-Taints污点和污点容忍

一、污点的概念 所谓的污点,是给k8s集群中的节点设置的,通过设置污点,来规划资源创建是所在的节点 污点的类型 解释说明PreferNoshedule 节点设置这个污点类型后; 表示,该节点接收调度,但是会降低调度的概…

hbase 集成 phoenix 实现 sql 化

1. 依赖 hbase > hbase 集群搭建 2. 下载安装包 点击下载 ps:该网页在内网可能打不开,遇到该情况有条件的可以打开 VPN 在下载 3. 上传解压 使用工具将安装包上传的服务器上 笔者这里选择 上传到 /opt/software 目录,解压到 /opt/mo…

基于STM32和阿里云的智能台灯(STM32+ESP8266+MQTT+阿里云+语音模块)

一、主要完成功能 1、冷光模式和暖光模式两种灯光 主要支持冷光和暖光模式两种,可以通过语音模块或手机app远程切换冷暖光 2、自动模式和手动模式 主要支持手动模式和自动两种模式(app或语音助手切换) (1)自动模式:根据环境光照…

针孔相机模型原理坐标系辨析内参标定流程内参变换

针孔相机的内参标定 针孔相机原理真空相机模型图片的伸缩和裁剪变换 内参标定———非线性优化张正定标定详细原理(含公式推导)通过多张棋盘格照片完成相机的内参标定流程(C代码)其他工具箱 相机分为短焦镜头和长焦镜头,短焦镜头看到的视野更广阔,同样距…

QFD赋能人工智能:打造智能化需求分析与优化新纪元

在科技飞速发展的今天,人工智能(AI)已经渗透到我们生活的方方面面。然而,如何让AI更加贴合用户需求,提供更加精准和个性化的服务?这成为了一个亟待解决的问题。质量功能展开(Quality Function Deployment,简…

openjudge_2.5基本算法之搜索_1998:寻找Nemo

题目 1998:寻找Nemo 总时间限制: 2000ms 内存限制: 65536kB 描述 Nemo 是个顽皮的小孩. 一天他一个人跑到深海里去玩. 可是他迷路了. 于是他向父亲 Marlin 发送了求救信号.通过查找地图 Marlin 发现那片海像一个有着墙和门的迷宫.所有的墙都是平行于 X 轴或 Y 轴的. 墙的厚度可…

股票战法课程之倍阴龙战法

1. 核心要素 1、股价处于低位震荡区间 2、涨停板分时走的比较流畅,即使去到分时均线以下也能够是秒拉上来,或者沿着分时均线上攻打板 3、涨停后次日阴线的成交量是前一日涨停板成交量的两倍以上 4、倍量阴线出现后的30天以内第一个涨停板则是买点的浮现…

【数据结构】图(Graph)

文章目录 概念图的存储方式邻接矩阵邻接矩阵表示法邻接矩阵表示法的特点 邻接表邻接表表示法邻接表表示法的特点邻接表表示法的定义与实现查找插入删除其它构造函数析构函数创建图输出图 图的遍历深度优先遍历(DFS)广度优先遍历 图的连接分量和生成树生成…

Hive查询操作详解

Hive 数据准备: Tips: (1)SQL 语言大小写不敏感。 (2)SQL 可以写在一行或者多行。 (3)关键字不能被缩写也不能分行。 (4)各子句一般要分行写。 &#xff0…

进程动静态库

文章目录 动态库和静态库1. 静态库2. 动态库 承接上文: 文件描述符 动态库和静态库 静态库与动态库: 静态库(.a):程序在编译链接的时候把库的代码链接到可执行文件中。程序运行的时候将不再需要静态库动态库&#xf…

python绘制R控制图(Range Chart)

R控制图(Range Chart),也称为范围图或移动极差图,是一种用于分析和控制生产过程中的变异性的统计工具。它通常与Xbar控制图(均值图)一起使用,可以提供关于生产过程变异性的额外信息。以下是R控制…

ArgoCD集成部署到Kubernetes

1:环境 kubernetes1.23.3ArgoCD2.3.3 2:ArgoCD介绍 Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes. Argo CD是一个基于Kubernetes的声明式的GitOps工具。 那么,什么是GitOps呢? GitOps是以Git为基…

feign整合sentinel做降级知识点

1&#xff0c;配置依赖 <!-- Feign远程调用依赖 --><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-openfeign</artifactId></dependency> <!--sentinel--><dependency>…

Linux使用操作(一)

Linux创建链接的方式 在Linux中&#xff0c;可以给文件创建链接。链接的意思可以理解是快捷方式&#xff0c;它指向另一个文件或目录。 软链接 软连接&#xff08;也叫符号链接&#xff09;是一种特殊类型的文件&#xff0c;它指向另一个文件或目录 语法 ln -s 原文件路径…

谷歌发布基于声学建模的无限虚拟房间增强现实鲁棒语音识别技术

声学室模拟允许在AR眼镜上以最少的真实数据进行训练&#xff0c;用于开发鲁棒的语音识别声音分离模型。 随着增强现实&#xff08;AR&#xff09;技术的强大和广泛应用&#xff0c;它能应用到各种日常情境中。我们对AR技术的潜能感到兴奋&#xff0c;并持续不断地开发和测试新…

SpringBoot---------整合Mybatisplus

快速入门 第一步&#xff1a;导入依赖 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.3.1</version></dependency> 第二步&#xff1a;编写mapper…